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ABSTRACT

The aim of this paper is to present some odd graceful graphs. In particular we show that an odd
graceful labeling of the all subdivision of double triangular snakes ( 24\, -snake ). We also prove that the

all subdivision of 2mMA, -snake are odd graceful. Finally, we generalize the above two results (the all

subdivision of 2MA, -snake are odd graceful).
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1.INTRODUCTION

The graphs considered here will be finite, undieaad simple. The symbolg(G) and E(G)
will denote the vertex set and edge set of a gfapbspectivelyp andq denote the number of
vertices and edges Gfrespectively.

A graphG of sizeq is odd-graceful, if there is an injectiagn from V(G) to {0, 1, 2, ..., 20-1}
such that, when each edggis assigned the label or weight () - ¢ (y)|, the resulting edge

labels are {1, 3, 5, ..., 2g-1}. This definition was introduced in 1991 by Gnanthj [1] who
proved that the class of odd graceful graptsHetween the class of graphs with -labelings and
the class of bipartite graphs.

Rosa [2 ] defined a triangular snake@®rsnake ) as a connected graph in which all blocks are
triangles and the block-cut-point graph is a path.Agtsnake be aA -snake with k
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blocks whilenA, -snake be aA -snake with k blocks and every block hasnumber of triangles
with one common edge.

[llustrationl:

NN TN

Figure 1: A,-snake 4A, -snake

Rosa[2] conjectured thdk, -snake (a snake wittk blocks) is graceful fon=0 or 1 ( mod 4 ) and

is nearly graceful otherwise. In 1989 Moulton [3] immeved Rosa's conjecture but using instead
of nearly graceful labeling an stronger labeling namedsimraceful.

A double triangular snake is a graph that formedway triangular snakes have a common path.
The harmonious labeling of double triangle snakeoduced by Xi Yue et al [ 4 ]. It is known
that the graphs which contain odd cycles are ndtgrdceful so Badr [5 ] used the subdivision
notation for odd cycle in order to prove that thWddivision of linear triangular snakes are odd
graceful. Badr et al [6] proved that the subdivision of &ad&(L,) is odd graceful.

In this paper we prove that an odd graceful lalgetih the all subdivision of double
triangular snakes4A, -snake ). We also prove that the all subdivision a2, -snake are odd
graceful. Finally, we generalize the above two reduttse all subdivision of tnA, -snake are
odd graceful).

2.MAIN RESULTS

Theorem 2.1 All the subdivision of double triangular snakeX\, -snake) are odd graceful.

Proof: Let G = 2A, -snake hasq edges ang vertices. The grapl® consists of the verticesu,
Us,.. o Uke1), (Vi,Vo,.. Vi ), (We,Wo,... W ) therefore we get the subdivision of double tridag
snakes S(G) by subdividing every edge of double triangulaalsss 27, -snake exactly once.

Let y; be the newly added vertex betwegmandu..; while w;; andw, are newly added vertices
betweenw; u; andw; Ui+, respectively, wheredi <k. Finallyy;; andv;, are newly added vertices
betweeny; u; andv; u.respectiviey,such thatsli <k.

The graph§G) consists of the vertices (1, Uy,...,Ux1), (ViVo,..., Vi ), ( We,Wo,... W ),
(W11, W12, Wa1,Who, . . . Wi, . . ;Wi ), (V11,V12,V21,Vo0, .. ., Vi, Vie ) @nd (Y1,Ya,...,¥« ) @s shown in Figure 2.
Clearly§S(G) hasq= 10k edges ang = 8k + 1 vertices.
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Figure 2: the subdivision of double triangular snak2A ( -snake )

we prove that the subdivision of double triangular sa&®) is odd graceful.
Let us consider the following numberiggof the vertices of the graph:

¢ (u)=6(i-1) 1k<k+1

¢ (y)=29-14i +11 1k<k

¢ (v)=6-4 1li<k

¢ (vij) =29-14i - § + 17 14<k,j=1,2
¢ (W)=6+4 li<k

¢ (W) = 20- 14i -6] + 19 14<k, j=1,2

1<j<2
MDE\\/X doVv) =max max 6(i-1),max 2q9-14i+11 - Imax 6i-4rjnax 2q-14i - 8j +

1<i<k+1 1<i <k I<i <k Isi <k

(a)
1<j<2

max 6i + 4, max 29- 14i-6j + 19%
O

1si <k 1<i <k
= 29- 1, the maximum value of all odds
Thus¢ (v) Ll {0,1,2,...,2q-1}.
(b) Clearly ¢ is a one- to — one mapping from the vertex set Gfto {0, 1, 2, ..., 2g-1}.

(c) It remains to show that the labels of the edtfes are all the odd integers of the interval [1,
2g-1].

Therange of ¢ (Uu)- ¢ (Wy) ={2q9-20i +19;i=12,...k}={201, 2g-21,....... , 19}
Therangeof ¢ (u)- ¢ (v) ={29-200+17;i=12,...kK={20-3,-23,....... 17}
Therange of ¢ (u) - ¢ (V1) ={20-20i+15;i =1,2,3,....,k}={20-5, 3-25,....... ,15}

The range of ¢ (vVi)- ¢ (vi) ={20-20i+13;i=1,2,3,..k}={209-7,...,13}
The range of ¢ (y))- ¢ (u.1) ={20-20i+11;i=1,2,3,...,k} ={209,...... 11}
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Therange of ¢ (Wi1)- ¢ (W) ={29-20i+9;i=1,2,..,k}={2q-11,....,9}

The range of ¢ (Wp)- ¢ (u+1) ={29-201+7;i=1,2,....k}={2q-13,....,7}

Therange of ¢ (v)- ¢ (Vi) ={29-20i+5;i=1,23,...,k}={2qg-15,......5}

Therange of ¢ (wp)- ¢ (W) ={29-20i +3;i=1,23,....k}={2qg-17,......3}

The range of ¢ (Vip)- ¢ (U.1) ={29-20i +1;i=1,23,...,k}={2q-19,.....,1}

Hence{ ¢ (Uu)- ¢ (v) :uveE}={1,3,5,...,20-1}so that the subdivision of double triangular
snakes RA, -snake) are odd graceful.

IHlustration2:

Figure 3: odd-graceful labelingf the graptS(2A, -snake).

Theorem 2.2 All the subdivision of2mA, -snake are odd-graceful, whera >1.
Proof :

Let G = 2mA, -snake hasq edges ang vertices. The grapfs consists of the verticesu(, uy), (
vivyL,v!), wiw/? ..., w™) therefore we get the subdivision of the graphS(G), by
subdividing every edge of the gragh=2mA, -snake exactly once. Ley, be the newly added
vertex betweeny and u, while w,, andw |,are newly added vertices betwesr u; andw, u,

respectively. Finally y,,andv,, are newly added vertices betweehu, andv | u, respectively
wherei=1,2,...m.

The graph§(G) consists of the verticesu(, uy), (V1 V7 ..., Vv"), Wi w7 .., W), yi, Wy,
Wi, ...,W )and {¢;,,Vi,, ..., v]s ) asshown in Figure 4. CleaG) hasq = 8m+ 2 edges
and p=6m+ 3 vertices.
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Figure 4: the subdivision of A, -snake

Let us consider the following numberimg of the vertices of the graph :

¢ (u)= (4m+ 2)(i -1) i=1,.2
¢ (y1) = 14m+3

¢ (v)=4-2 1<l €m
¢ (W)= 4(1+m)+2 1<l<m

é (Vi) = 20m+ 2 + 3- (8m+ 2)j 2<l<m, j=1.2

¢ (vy') = (18m+5)- (6m+ 2)] j=12

¢ (Wyj) = (18mH+ 21+ 5) - (4m+2)] j=12,2<l<m

The edge labels well be as follows:

The verticess andwl'l, 1<I| £m, induce the edge labels = i+ 2 + 3, 1<| <m}

= {14m+5,14m+7,....,16m+ 3}

The vertices), andy; induce the edge labels {iv+ 3}

The verticess, andv,,; 1 <I <m, induce the edge labels {i®+ 3, 12n+ 2+ 1 ; 2<| <m}
=(12m+ 3, 1a+5,.....14m+ 1}

The vertices/,,andv, ,y; andu, , w,, andw, induce the edge labels £1 <m:

{12m+3-2: 1<l <m}{10m+ 1},{10m- 2l + 1; 1<| <m}={12m+ 1, 12n-1,.....,10m+1,

The verticeSNl'2 andu, induce the edge labelf+ 2 - 1}; 1<| <m}={6m + 1, 6m + 3,...., 8m
1)
The vertices/; andv, induce the edge label {6- 1}.
The verticesw,, andw/ , induce the edge labels f6- 2| - 1; 1< <m}={6m - 3, 6m
5,....,4m1}.
The vertices/;, andv, ; 2 <| <minduce the edge labels =f#- 2| + 1; 2<| <m}

= {4m-3, 4m5,....2m+1).
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The vertices/;, andu, induce the edge label {2- 1}.
Finally the verticeS/l'2 anduinduce the edge labeld{3 ; 2<I<m} = {1,3,5,.....,2m-3}.
Hence the grapB(2mA, -snake ) is odd-graceful for eaaim > 1.

Theorem 2.3 All subdivision of 2mA, -snake are odd-graceful

Proof.

Let G=2mA, -snake hasq edges and vertices. The grapl& consists of the vertices u,
UgsoosUker)y VIV s VM), (VaV S o V), o W VY s V), Wi w2 w™), (
wiw’r . wl), ..., Wi w/ ..,w) therefore we get the subdivision of doublengialar

snakesS(G) by subdividing every edge off@A, -snake exactly once. Ley; be the newly added
vertex betweemy; andu, while w/, andw /, are newly added vertices betwesr u andw | ui;

respectively. Finally ,v/) and v/,are newly added vertices betweerd u; and v/ u.; -

respectively where=1, 2, .. .kandj =1, 2, 3,. . m( Figure 5). Clearh5G) hasq=k (8m+
2) edges.

Figure 5: the subdivision of /A, -snake

Let us consider the following numberimg of the vertices of the graph :

¢ (u) = (4m+2)(i - 1) 1<k

é (W') = (4m+2)i + 4 1<i<k, 1<l<m
é (V') = (4m+2)i + 40-m-1) 1<<k, 1<l<m
¢ (¥i) =20-(12m+2)i + 10m+1 ; 1<i<k,1<j<2
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¢ (W) = 20-(12m+2)i - (4m+2)j + 14m+ 21+ 3; 1<i<k,1<j<2,1<l<m
¢ (vi') = 2-(12m+2)i - BmH+2)j + 16m+2A+1; 1<j<2,1<I<m
¢ (W) = 20-(12m+2)i - (Bm2) + 14m+ 3; 1 <i <k, 1<j<2

In a view of the above defined labeling pattefis odd-graceful for the gragG). henceSG)
is odd-graceful for alin>1,k > 1.

[llustration 2,3 :

1 0

[ ]

Figure 6: odd-graceful labeling of the grapi\, -snake

3. CONCLUSION

Graceful and odd graceful of a graph are two entiddferent concepts. A graph may posses one
or both of these or neither. In the present worksiwew that an odd graceful labeling of the all

subdivision of double triangular snake&/\, -snake ). We also proved that the all subdivision of
2mA, -snake are odd graceful. Finally, we generalized the abaseresults ( the all subdivision
of 2mA, -snake are odd graceful).
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