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ABSTRACT

The aim of this paper is to present some odd graceful graphs. In particular we show that an odd

graceful labeling of the all subdivision of double triangular snakes ( 2 k∆ -snake ). We also prove that the

all subdivision of 2 1m∆ -snake are odd graceful. Finally, we generalize the above two results (the all

subdivision of 2 km∆ -snake are odd graceful).
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1.INTRODUCTION

The graphs considered here will be finite, undirected and simple. The symbolsV(G) andE(G)
will denote the vertex set and edge set of a graphG respectively.p andq denote the number of
vertices and edges ofG respectively.

A graphG of sizeq is odd-graceful, if there is an injection from V(G) to {0, 1, 2, …, 2q-1}

such that, when each edgexy is assigned the label or weight |(x) - (y)|, the resulting edge
labels are {1, 3, 5, …, 2q-1}. This definition was introduced in 1991 by Gnanajothi [1] who
proved that the class of odd graceful graphs lies between the class of graphs with α -labelings and
the class of bipartite graphs.

Rosa [2 ] defined a triangular snake(or∆ -snake ) as a connected graph in which all blocks are
triangles and the block-cut-point graph is a path. Letk∆ -snake be a∆ -snake with k
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blocks while kn∆ -snake be a∆ -snake with k blocks and every block hasn number of triangles

with one common edge.

Illustration1:

Figure 1: 3∆ -snake 24∆ -snake

Rosa[2] conjectured that k∆ -snake (a snake withk blocks) is graceful forn ≡0 or 1 ( mod 4 ) and

is nearly graceful otherwise. In 1989 Moulton [3] has proved Rosa's conjecture but using instead
of nearly graceful labeling an stronger labeling named almost graceful.

A double triangular snake is a graph that formed by two triangular snakes have a common path.
The harmonious labeling of double triangle snake introduced by Xi Yue et al [ 4 ]. It is known
that the graphs which contain odd cycles are not odd graceful so Badr [5 ] used the subdivision
notation for odd cycle in order to prove that the subdivision of linear triangular snakes are odd
graceful. Badr et al [6] proved that the subdivision of laddersS(Ln) is odd graceful.

In this paper we prove that an odd graceful labeling of the all subdivision of double
triangular snakes (2 k∆ -snake ). We also prove that the all subdivision of 2 1m∆ -snake are odd

graceful. Finally, we generalize the above two results ( the all subdivision of 2 km∆ -snake are

odd graceful).

2. MAIN RESULTS

Theorem 2.1 All the subdivision of double triangular snakes (2 k∆ -snake ) are odd graceful.

Proof: Let G = 2 k∆ -snake hasq edges andp vertices. The graphG consists of the vertices (u1,

u2,…,uk+1), (v1,v2,…,vk ), ( w1,w2,…,wk ) therefore we get the subdivision of double triangular
snakes S(G) by subdividing every edge of double triangular snakes 2 k∆ -snake exactly once.

Let yi be the newly added vertex betweenui andui+1 while wi1 andwi2 are newly added vertices
betweenwi ui andwi ui+1 respectively, where 1≤ i ≤k. Finally,vi1 andvi2 are newly added vertices
betweenvi ui andvi ui+1respectivley,such that 1≤ i ≤k.
The graph S(G) consists of the vertices (u1, u2,…,uk+1), (v1,v2,…,vk ), ( w1,w2,…,wk ),
(w11,w12,w21,w22,…,wk1,…,wk2 ),(v11,v12,v21,v22,…,vk1,vk2 ) and (y1,y2,…,yk ) as shown in Figure 2.
ClearlyS(G)  hasq = 10k edges andp = 8k + 1 vertices.
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Figure 2: the subdivision of double triangular snakes (2 k∆ -snake )

we prove that the subdivision of double triangular snakes S(G)  is odd graceful.
Let us consider the following numberingof the vertices of the graphG :

(ui) = 6( i - 1 )                          1 <i < k+1

(yi) = 2q - 14i + 11                    1 <i < k

(vi) = 6i - 4                              1 <i < k

(vij) = 2q - 14i - 8j + 17           1 <i < k , j = 1, 2

(wi ) = 6i + 4                            1 <i < k

(wij) = 2q- 14i -6j + 19            1 <i < k , j= 1, 2
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=  2q – 1, the maximum value of all odds. .

Thus (v) ∈ {0, 1, 2,…,2q – 1}.

(b) Clearly is a one– to – one mapping from the vertex set ofG to {0, 1, 2, …, 2q-1}.

(c) It remains to show that the labels of the edges of G are all the odd integers of the interval [1,
2q-1].

The range of׀ (ui ) – (wi1) ׀ = {2q - 20i + 19; i = 1,2,…,k } ={2 q-1, 2q-21 ,……., 19}

The range of׀ (ui ) - (yi) ׀ = {2q - 20i + 17 ;i =1,2,….k} = {2 q-3 , 2q-23 ,…….,17}

The range of׀ (ui) - (vi1) ׀ = {2q-20i+15; i =1,2,3,…., k } = {2 q-5 , 2q-25 ,…….,15}

The range of׀ (vi1)- (v1) ׀ = { 2q-20i+13 ; i =1,2,3,..,k } = {2 q-7,…,13}

The range of׀ (yi)- (ui+1) ׀ = {2q-20i+11 ; i =1,2,3,…, k } = {2 q-9,……,11}
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The range of׀ (wi1)- (wi) ׀ ={2q - 20i + 9 ; i =1,2,…, k } = {2 q - 11,….,9}

The range of׀ (wi2)- (ui+1) ׀ ={2q - 20i + 7 ; i =1,2,…, k } = {2 q - 13,….,7}

The range of׀ (vi)- (vi2) ׀ = {2q - 20i + 5 ; i =1,2,3,…, k } = {2 q - 15,…..,5}

The range of׀ (wi2)- (wi) ׀ ={2q - 20i + 3 ; i =1,2,3,…, k } = {2 q - 17,…..,3}

The range of׀ (vi2)- (ui+1) ׀ ={2q - 20i + 1 ; i =1,2,3,…, k } = {2 q -19,…..,1}

Hence {׀ (u) - (v) ׀ : uv є E } = {1, 3, 5,…, 2q-1}so that the subdivision of double triangular

snakes (2 k∆ -snake ) are odd graceful. ■

Illustration2:

Figure 3: odd-graceful labelingof the graphS( 42∆ -snake).

Theorem 2.2 All the subdivision of 12m∆ -snake are odd-graceful, wherem ≥1.

Proof :

Let G = 2 1m∆ -snake hasq edges andp vertices. The graphG consists of the vertices (u1, u2), (
1
1v , 2

1v ,…, 1
mv ), ( 1

1w , 2
1w ,…, 1

mw ) therefore we get the subdivision of the graphG, S(G), by

subdividing every edge of the graphG =2 km∆ -snake exactly once. Lety1 be the newly added

vertex betweenu1 andu2 while 11
iw and 12

iw are newly added vertices between1
iw u1 and 1

iw u2

respectively. Finally , 11
iv and 12

iv are newly added vertices between1
iv u1 and 1

iv u2 respectively

wherei = 1, 2, . . .,m.
The graphS(G) consists of the vertices (u1, u2), (

1
1v , 2

1v ,…, 1
mv ), ( 1

1w , 2
1w ,…, 1

mw ), y1 , ( 11
iw ,

12
iw , …, 12

mw ) and ( 11
iv , 12

iv , …, 12
mv )  as shown in Figure 4. ClearlyS(G)  hasq = 8m + 2 edges

and p = 6m + 3 vertices.
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Figure 4: the subdivision of 2 1m∆ -snake

Let us consider the following numberingof the vertices of the graphG :

(ui) = (4m + 2)( i -1)                               i =1,2

(y1) = 14m+3

(vi
l) = 4l - 2 1 ≤ l ≤m

(w1
l) = 4( l + m) + 2 1 ≤ l ≤m

(v1j
l) = 20m + 2l + 3 - (8m + 2 )j 2 ≤ l ≤m ,   j = 1,2

(v1j
1) = (18m+5 )- ( 6m + 2)j                   j = 1,2

(w1j
l) = (18m+2l+5) - (4m+2)j              j = 1,2 , 2 ≤ l ≤m

The edge labels well be as follows:
The verticesu1 and 11

lw , 1 ≤ l ≤m , induce the edge labels = {14m + 2l + 3 , 1≤ l ≤m}

=  { 1 4 m + 5 , 1 4m + 7 ,…..,16m + 3}
The verticesu1 andy1 induce the edge labels {14m + 3}

The verticesu1 and 11
lv ; 1 ≤ l ≤m , induce the edge labels {12m + 3, 12m + 2l+ 1 ; 2 ≤ l ≤m }

={12m + 3, 12m + 5,….,14m + 1}
The vertices 11

lv and 1
lv ,y1 andu2 , 11

lw and 1
lw induce the edge labels ; 1≤ l ≤m:

{12m + 3 – 2l: 1 ≤ l ≤m},{10 m + 1},{10m – 2l + 1; 1 ≤ l ≤m}={12 m + 1, 12m-1,…..,10m +1,
10m - 1,……,8m+1}.
The vertices 12

lw andu2 induce the edge label{6m + 2l - 1}; 1 ≤ l ≤m}={6m + 1, 6m + 3,…., 8m

- 1}
The vertices 1

1v and 1
12v induce the edge label {6m - 1}.

The vertices 12
lw and l

iw , induce the edge labels {6m – 2l - 1;   1≤ l ≤m}={6 m - 3, 6m-

5,….,4m-1}.
The vertices 12

lv and 1
lv ; 2 ≤ l ≤m induce the edge labels = {4m – 2l + 1; 2≤ l ≤m}

= {4m - 3, 4m-5,….,2m+1}.
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The vertices 1
12v andu2 induce the edge label {2m - 1}.

Finally the vertices 12
lv andu2 induce the edge labels{2l-3 ; 2≤ l ≤m } = {1,3,5,…..,2m-3}.

Hence the graphS(2 1m∆ -snake ) is odd-graceful for eachm ≥ 1. ■

Theorem 2.3 All subdivision of 2 km∆ -snake are odd-graceful

Proof.
Let G=2 km∆ -snake has q edges andp vertices. The graphG consists of the vertices (u1,

u2,…,uk+1), (
1
1v , 2

1v ,…, 1
mv ), ( 1

2v , 2
2v ,…, 2

mv ), . . ., ( 1
kv , 2

kv ,…, ,
m
kv ), ( 1

1w , 2
1w …, 1

mw ), (
1
2w , 2

2w …, 2
mw ), . . ., ( 1

kw , 2
kw …,

m
kw )   therefore we get the subdivision of double triangular

snakesS(G) by subdividing every edge of 2 km∆ -snake exactly once. Lety1 be the newly added

vertex betweenu1 andu2 while 1
j

iw and 2
j

iw are newly added vertices betweenj
iw ui and j

iw ui+1

respectively. Finally , 1
j

iv and 2
j

iv are newly added vertices betweenj
iv ui and j

iv ui+1 -

respectively wherei = 1, 2, . . .,k and j = 1, 2, 3, . ..,m ( Figure 5 ). ClearlyS(G)  hasq = k (8m +
2) edges.

Figure 5: the subdivision of 2 km∆ -snake

Let us consider the following numberingof the vertices of the graphG :

(ui) = (4m + 2)( i - 1)                  1 <i < k

(wi
l ) = (4m+2)i + 4l 1 < i < k ,  1 < l < m

(vi
l ) = (4m+2)i + 4(l-m-1)        1 <i < k ,  1 < l < m

( yi ) = 2q-(12m+2)i + 10m+1 ; 1<i < k , 1 < j < 2
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(wij
l )  = 2q-(12m+2)i - (4m+2)j + 14m + 2l + 3;  1 <i < k , 1 < j < 2, 1 <l < m

(vij
l )  = 2q-(12m+2)i - (8m+2)j + 16m + 2l + 1;  1 <j < 2, 1 <l < m

(vij
1)  = 2q-(12m+2)i - (6m+2) + 14m + 3 ; 1 <i < k , 1 < j < 2

In a view of the above defined labeling patternis odd-graceful for the graphS(G). henceS(G)
is odd-graceful for allm >1, k > 1.

Illustration 2,3 :

Figure 6: odd-graceful labeling of the graph 36∆ -snake

3. CONCLUSION

Graceful and odd graceful of a graph are two entirely different concepts. A graph may posses one
or both of these or neither. In the present work weshow that an odd graceful labeling of the all
subdivision of double triangular snakes (2 k∆ -snake ). We also proved that the all subdivision of

2 1m∆ -snake are odd graceful. Finally, we generalized the above two results ( the all subdivision

of 2 km∆ -snake are odd graceful).
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